
Neural Codec Language Models for Disentangled and Textless Voice
Conversion

Alan Baade1, Puyuan Peng1, David Harwath1

1The University of Texas at Austin, The United States of America
abaade@utexas.edu, pyp@utexas.edu, harwath@utexas.edu

Abstract

We introduce a method for textless any-to-any voice con-
version based on the recent progress in speech synthesis driven
by neural codec language models. To disentangle the speaker
and linguistic information, we adapt a speaker normalizing pro-
cedure for discrete semantic units, and then generate with an au-
toregressive language model for greatly improved diversity. We
further improve the similarity of the output audio to the target
speaker’s voice by leveraging classifier free guidance. We eval-
uate our techniques against current text to speech synthesis and
voice conversion systems and compare the effectiveness of dif-
ferent neural codec language model pipelines. We demonstrate
state-of-the-art results in accent disentanglement and speaker
similarity for voice conversion with significantly less compute
than existing codec language models such as VALL-E.
Index Terms: Voice Conversion, Neural Codec Lanugage
Models, Textless Speech Processing

1. Introduction and Related Work
Recently, neural codec language models, which train a genera-
tive language model on discrete audio codes, have made sig-
nificant breakthroughs in generative spoken language model-
ing [1, 2], music generation [3, 4], and zero-shot text to speech
synthesis (TTS) [5, 6]. These improvements have been made
in large part due to recent advances in both neural compres-
sion models [7, 8] and self-supervised speech models [9, 10].
We investigate building neural codec language models for the
task of any-to-any voice conversion, which provides as input
a source utterance and reference target speech with the goal of
outputting an audio with the linguistic information of the source
and speaker qualities of the target.

Cascaded ASR+TTS approaches for VC make models com-
plex, expensive, can cause cascading errors, and sometimes we
might want to preserve non-verbal vocalizations in the source
speech such as laughter, breaths, sighs, filler words, etc. Text-
less voice conversion seeks to perform voice conversion with-
out any text seen at training or inference. There are a variety of
modern approaches for textless VC, such as using discrete codes
for semantic disentanglement [11], pipelines with bottleneck
layers [12], diffusion models [13, 14], and more recently closed-
source neural codec language model approaches [15, 16]. How-
ever, we find that existing textless voice conversion models
struggle to disentangle factors such as accent and prosody from
the underlying phonetic and lexical content of the speech. We
hypothesize this is due to the fact that textless systems by nature
lack an abstracted, speaker-and-time-invariant representation of
the speech such as a phonetic or text transcription.

Based on these issues, we contribute the following:

AR Norm→Semantic

AR Semantic→Acoustic

NAR
Acoustic 

NAR
Acoustic 

CFG

EnCodec
Decoder

Output

Silence

L ∈ {2..8}

Source

Normalizer

mHuBERT

Ta
rg

et

EnCodec

Normalizer
Norm

Semantic

Acoustic

Input Tokenization

Figure 1: Our model inference pipeline when using normalized
units. Tokens containing information from the source have solid
borders and tokens from the target prompting have dotted bor-
ders. Triangles represent acoustic tokens, squares represent se-
mantic tokens, and circles represent normalized semantic to-
kens. The NAR section (right) is run once per quantizer layer.

• We adapt neural codec langauge models to the task of any-
to-any textless voice conversion and evaluate different model
pipelines that trade off the balance between disentanglement
and information loss.

• We demonstate that using semantic unit normalization, which
has shown utility in textless speech to speech translation [17],
is an effective way of removing entangled features such as
accent from converted voices.

• We bring classifier free guidance from the diffusion model
literature [18] to neural codec language models, greatly im-
proving speaker similarity at little compute cost.

Code at https://github.com/AlanBaade/DisentangledNCLM

2. Method
Our method is depicted in Figure 1. Like VALL-E we use both
autoregressive (AR) models and non-autoregressive (NAR)
models to trade off between inference quality and speed at dif-
ferent stages. However, unlike VALL-E, our model does not
require a text transcript of the speech to be converted, and it
leverages multiple tokenizations of the speech signal in order to
separately model higher level semantic information and lower
level acoustic details.

2.1. Discrete Codes

For the task of voice conversion, we want audio representa-
tions that disentangle the semantic information of the audio



from speaker information. We use three main classes of codes
for generation: acoustic, semantic, and normalized semantic.
Acoustic tokens contain fine-grained details about the audio,
and are the final output of our language model pipeline. We
leverage acoustic tokens from EnCodec [8] under the same set-
tings as VALL-E, with 8 residual vector quantizers, providing
one token per quantizer at 75Hz. Semantic tokens contain time-
aligned linguistic information and have been shown to increase
performance for audio continuations [2] and TTS [6]. Recent
and concurrent work [4, 15] has also used semantic tokens for
neural codec language model voice conversion. For semantic
tokens, we follow [17] and use mHuBERT.

New to neural codec language models, we use speaker nor-
malized semantic units as the coarsest input to our models.
These units are meant to contain little to no speaker informa-
tion and are not time-aligned. For textless voice conversion, we
use the reduced-norm units and pre-trained model from [17].
These units are generated by having a reference speaker (such
as a single-speaker TTS model) repeat utterances from a variety
of speakers, totaling 10h of reference speech. A CTC model is
then trained to predict the mHuBERT tokenization of the refer-
ence speech given the paired speech. These predictions are run-
length-encoded, resulting in the final units, henceforth “norm.”

For our TTS replications, we follow VALL-E in using
phones as a coarsest (normalized semantic) input. To gener-
ate these phones, we take a self-supervised HuBERT[10] model
that was pretrained and finetuned on Librispeech, following the
provided recipe of CTC-based HuBERT ASR finetuning.

2.2. Autoregressive Model

The AR model is a modification of a Transformer decoder [19]
that takes as input coarse-grained tokens x = {x1, . . . , xn},
such as normalized semantic units, and has the task of continu-
ing finer-grained sequence of tokens y = {y1, . . . , ym}, such as
mHuBERT tokens. We insert a special stop token to represent
the end of the fine-grained tokens, and learn separate embed-
dings for each token type. Because there is no autoregressive
target on xi, we do not apply a decoder attention mask to the
tokens of x, allowing information to flow bidirectionally.

2.3. Non-Autoregressive Model

When modeling ground truth audio with residual vector quan-
tizers such as EnCodec, deeper quantized layer outputs tend to
carry less-important detail than earlier code layers. To speed
up inference, VALL-E introduces an NAR model that assumes
independence between tokens at later quantizer layers, predict-
ing all timesteps for a given layer in parallel. As its input,
the NAR model receives semantic tokens a of the source, as
well as a fixed amount (3 seconds) of EnCodec tokens from all
quantizer layers, b, to represent the target speaker. Then the
NAR model predicts the output of the lth quantized token layer,
l ∈ {2 . . . L} of EnCodecs cT×L given the previous layers,
modeling p(ct,l | a, b, c<l). Following the NAR stage, we take
all EnCodec tokens generated and feed them into EnCodec’s
decoder to get an output waveform. To represent multiple quan-
tization layers at the same timestep of ground truth audio, the
NAR model sums the embeddings of all available layers at that
token, each layer having its own embedding projection.

To better inform NAR models about what quantizer layer
to output, VALL-E uses AdaLN [20] during layer normaliza-
tion. We adopt AdaLN-Zero from [21] for this injection, which
has been shown to outperform AdaLN at a negligible additional
compute cost.

2.4. Inference

Inference for AR models is treated as in-context-learning where
the model generates a continuation of a semantic input given a
few seconds of audio from the target speaker. The model takes
in coarse tokens from the source speech x1..Tx and reference
target speech z1..Tz as well as fine tokens from the reference
speech y1..Ty . These inputs are concatenated as {x, z, y} and
the AR model then outputs yTy+1. This process repeats until a
stop token is sampled.

Inference for the NAR stage is similar to training. Fine-
grained semantic units are taken from either the source audio
or an earlier AR stage, first-quantizer EnCodecs are taken as
output from an AR model, and the speaker conditioning is taken
from the target audio EnCodecs.

2.5. Classifier Free Guidance

We borrow classifier free guidance (CFG) [18] from the diffu-
sion model literature to dramatically improve speaker similarity
between our model’s output and the target speaker across all
neural codec language model implementations. CFG strength-
ens the speaker conditioning for output generation by reweight-
ing the outputs of a conditioned and unconditioned model. We
implement CFG in our NAR models by replacing the target
speaker conditioning with silence, and perform guidance in the
logit domain, where for CFG parameter ω, semantic context a,
enrolled target speaker codes b, tokenized silence codes b′, and
previously computed encodec units c < l we output:

ct,l = argmax
i

{
(1 + ω) log (p(it|a, b, c<l))

− ω log
(
p(it|a, b′, c<l)

)}
(1)

An important note is that in diffusion models, Classifier Free
Guidance doubles the compute required at inference due to hav-
ing both a conditioned and unconditioned forward pass. How-
ever, because the NAR phase is light and only runs per each
output codebook, CFG runs at low cost.

3. Experiments
3.1. Datasets

Like [5], we train all of our models using the unlabeled 60k hour
split of LibriLight [22]. Due to storage and compute constraints,
we subsample LibriLight by randomly choosing at most one
hour of audio from each speaker. This leaves us with 6k hours
of audio from 7439 speakers. We crop speaker files uniformly
randomly into chunks between 7 and 13 seconds long, chosen to
include the evaluation statistics of VALL-E (4-10 seconds plus
a 3-second prompt) while keeping sequences short for compute
efficiency. To get enrolled EnCodec codes for the NAR model,
we randomly select a file from the same speaker and use a 3-
second crop.

We primarily evaluate using LibriSpeech to directly com-
pare our numbers with closed-source prior work such as VALL-
E and Spear-TTS. Specifically, we use all 4-10 second audio
files in LibriSpeech test-clean as sources and pair each source
with a randomly sampled target audio from a different speaker
cropped to 3 seconds. We develop all hyperparameters on Lib-
riSpeech dev-clean. We use VCTK as an auxillary dataset fre-
quently cited in prior work to inspect the robustness of our mod-
els. Unexplored in prior work is inspecting voice conversion
across multiple accents to evaluate the extent to which features



other than voice can be disentangled. We augment LibriSpeech
Test-Clean with accents from the diverse EdAcc dataset [23],
unseen to all models during training, using the provided times-
tamps to expect single-speaker spans from conversations.

3.2. Model Pipelines

We create and test several model decoding pipelines to compare
the necessity of different types of tokens. As input from the
source audio, we compute either norm units, phone units, or
skip immediately to mHuBERT units. From there, we generate
a finer token, such as mHuBERT or first quantizer encodecs
using an AR model. For the NAR model we always take in
first quantizer EnCodec units and semantically condition using
either phones, norm, or mHuBERT tokens, which we call P-
NAR, N-NAR, and M-NAR respectively.

We evaluate three main pipelines. Ours-Aligned is our out-
put voice conversion model using mHuBERT as input, gen-
erating first layer encodec tokens autoregressively and then
using M-NAR for output, in short: mHuBERT→Encodec
1→M-NAR. Because mHuBERT features have a fixed 50hz
sample rate, Ours-Aligned has a deterministic output length
and phones in the output speech are time-aligned with those
in the source audio. Depicted in Figure 1, Ours-Norm
= Norm→mHuBERT→Encodec 1→M-NAR is our textless
model intended to further disentangle features by using nor-
malized semantic units. These units allow for the first
non-time-aligned textless voice conversion model, and un-
lock now disentanglement potential. Ours-Phone = Phones→
mHuBERT→Encodec 1→P-NAR is our implementation of a
textual baseline model.

3.3. Implementation Details

Like VALL-E, for both AR and NAR models we use a trans-
former architecture with 12 layers, an embedding dim of 1024,
feed-forward dim of 4096, dropout of 0.1, sinusoidal position
embeddings, and cross-entropy loss. Due to our compute bud-
get, we train for 200k steps–1/4th of what VALL-E used, for
each of our models. We warm up for 8k steps, hold for 92k
steps, and linearly decay to 0 for the last 100k steps. All other
hyperparameters match VALL-E. We train each model for 8
days on one 48GB Nvidia A40 using gradient accumulation.
By default we use CFG during NAR decoding with ω = 5. We
implement our models using Fairseq [24].

During inference, our AR models with norm token inputs
use a beam size of 10, like SPEAR-TTS, while phone input
and mHuBERT input models use temperature sampling with
t = 0.75, t = 0.65 respectively. For the NAR model, we use
greedy sampling. During AR inference, we introduce a short
period of silence at the end of the target audio to account for
unnaturally cutting off speech mid-word when cropping to 3
seconds. We also find that preventing long repeating sequences
of output tokens improves decoding.

4. Evaluation
We evaluate using objective and subjective metrics. We mea-
sure semantic content preservation objectively with word er-
ror rate (WER). We calculate WER using the publicly available
checkpoint of HuBERT Large1 finetuned on LibriSpeech 960h,
the same model as VALL-E. We measure speaker similarity ob-
jectively using the speaker-verification model WavLM-TDNN1

1github.com/microsoft/UniSpeech/tree/main/downstreams

[25], the same as SPEAR-TTS. This model outputs speaker sim-
ilarity (SPK) as a score between -1 and 1, 1 being most simi-
lar, and we take the mean across examples. Although SPEAR-
TTS claims to use the same model as VALL-E, we find that
VALL-E uses a non-publicly-available checkpoint with differ-
ent results (SPEAR-TTS and VALL-E’s models have 0.431 and
0.383 equal error rate respectively on Vox1-O).

For subjective evaluation, like prior work [26], we com-
pute comparative quality scores for naturalness (CMOS) and
Speaker Similarity (C-SMOS) on a 40-audio unique-speaker
subset of our LibriSpeech Test-Clean objective data. We also in-
troduce a new disentanglement metric, Dis-CMOS, which asks
evaluators to rate and compare the extent to which the accent
and cadence represent match target speaker. We evaluate this
with the goal of disentangling speaker ID and accent, allow-
ing them to be separately modelled and controlled. To the best
of our knowledge, we are the first work to explicitly measure
accent conversion for voice conversion and text-to-speech (Au-
dioBox [27] uses an internal dataset with multiple accents, but
only uses it to evaluate speaker similarity and naturalness). We
restrict ourselves to only evaluate to and from American and
UK-native accents to match current training datasets, and gen-
erate 40 audios. Subjectively, we do not observe meaningful
out-of-domain zero-shot accent performance. We hope that fu-
ture work can extend to lower-resource accents. We evaluate
using MTurk and receive 5 reviews per sample.

4.1. Results

Tables 1 and 3 contain our objective evaluation. We compare
against previous SOTA models in TTS and VC. For TTS we
choose YourTTS, VALL-E and SPEAR-TTS. For VC we com-
pare against TriAAN-VC [12], DiffVC [13], and FreeVC-s [28],
the current state-of-the-art open source textless voice conver-
sion models. UniAudio [16] and LM-VC [15] are recent closed-
source neural codec language models that perform high qual-
ity voice conversion. Unfortunately, we find we are unable to
fairly compare with the VC results from the UniAudio paper, as
the provided numbers significantly outperform our replicated
ground-truth different-sample-from-same-speaker baseline (Ta-
ble 3). Therefore, we compare to the textful UniAudio model
as a baseline instead.

We find that our models obtain SOTA results against avail-
able models for voice conversion in SPK on LibriSpeech. Our
aligned textless model and textual phone model also outperform
all models but FreeVC-s in WER, which has a very low speaker
similarity. Ours-Norm has a significantly higher WER than
other models, but outperforms our VALL-E reproduction (Ours-
VALL-E) on equal data and compute. An increase in WER is
expected because disentangling almost necessarily requires los-
ing more information from the source. We leave creating dif-
ferent less lossy speaker normalized unit types to future work,
with [29] being a promising direction. We notice that Ours-
Phone significantly outperforms both VALL-E and our replica-
tion, directly demonstrating the importance of adding interme-
diate semantic units during training. Our models are effective
across multiple datasets, outperforming TriAAN-VC on VCTK
on speakers not seen during training, where Ours Norm shows
a significantly smaller WER gap. We only compare against
TriAAN-VC because the work has published evaluation splits
and due the potential of overlapping train-test between other
models on VCTK.

Table 2 contains subjective evaluations. We see striking
results in terms of the performance of our normalized model



improving accent disentanglement, matching or outperforming
our TTS phone-based model which contains little-to-no source
speaker accent information. This is followed by our time-
aligned model, which still manages to significantly disentangle
accent compared to prior work. We find that our models subjec-
tively perform at par with voice conversion systems in terms of
naturalness and similarity, with confidence intervals for CMOS
and S-CMOS tighter than similar works.

Table 1: Objective Evaluation on LibriSpeech Test-Clean. We
use provided open-source implementations and weights for all
models except VALL-E and SPEAR-TTS. No Test-Clean speak-
ers are observed during training for any model.

Type Model WER (%) ↓ SPK ↑

Oracle Encodec 2.4 0.90

YourTTS [30] 8.5 0.46
TTS SPEAR-TTS [6] - 0.56

VALL-E [5] 5.9 0.58*
Replication 14.1 0.46

UniAudio-1B [16] 2.0* 0.71

DiffVC [13] 7.5 0.33
VC FreeVC-s [28] 3.1 0.20

TriAAN-VC [12] 5.8 0.28

Ours-Aligned (VC) 5.4 0.58
Ours Ours-Norm (VC) 12.6 0.61

Ours-Phone (TTS) 5.1 0.62

Table 2: Subjective evaluation with 95% confidence intervals.
CMOS and S-CMOS are evaluated on Librispeech Test-Clean.
Dis-CMOS is evaluated on a mix of unseen speakers from the
US and UK from EdAcc and LibriSpeech Test-Clean. Bold is
best, overlapping confidence intervals are underlined.

Model CMOS S-CMOS Dis-CMOS

Diff-VC 0.07 ±0.09 0.10 ±0.09 -0.30 ±0.12
Free-VC-s 0.12 ±0.09 -0.10 ±0.09 -0.51 ±0.12
TriAAN-VC -0.06 ±0.08 -0.07 ±0.08 -0.12 ±0.13

Ours Aligned -0.12 ±0.08 0.01 ±0.09 0.12 ±0.14
Ours Norm 0.02 ±0.08 0.00 ±0.08 0.52 ±0.15
Ours Phone -0.03 ±0.09 -0.01 ±0.09 0.30 ±0.14

Table 4 shows our evaluation of several different model
pipelines for the purpose of better understanding where cas-
caded error comes from, without CFG. In our ground truth
(GT) Encodec 1 experiments, we perform resynthesis to the
same speaker because first quantizer encodec units contain large
amounts of speaker information. We notice that when using GT
mHuBERT units, M-NAR improves SPK during resynthesis but
harms SPK when performing VC, implying the NAR model has
picked up on speaker information within semantic units during
training. This highlights the benefits of using normalized units,
although adding CFG closes the gap significantly as seen in 1.
We also notice that our Phones→Encodec 1→P-NAR model
(VALL-E Replication in 1), a replication of VALL-E except for
changes described in our methods, performs poorly compared to
VALL-E. This demonstrates the importance of additional data
and train time. Meanwhile, inserting semantic mHuBERT units
as an additional step dramatically improves results across the

Table 3: VCTK Objective Evaluation. We evaluate on 400 pairs
of samples selected from the TriAAN-VC dev and test set, mak-
ing all speakers unseen.

Model WER (%) ↓ SPK ↑

Ground Truth 4.7 0.63

Ours Aligned 12.7 0.44
Ours Norm 17.7 0.44
Ours Phone 13.8 0.47
TriAAN-VC 15.6 0.31

board. Although this result has been implicitly seen across dif-
ferent works [5, 6], to the best of our knowledge this is the first
experiment to explicitly control for other factors.

Table 4: Ablations on different model pipelines, using nota-
tion defined in 3.2. Top: we resynthesize speech from GT first-
quantizer-EnCodecs with each NAR model. Middle: we eval-
uate cascaded error in voice conversion using GT mHuBERT
tokens as a semantic input. Bottom: We evaluate conversion
from normalized units with different pipelines.

Pipeline Types (no CFG) WER SPK

GT Encodec 1→P-NAR 2.9 0.67
GT Encodec 1→N-NAR 4.5 0.66
GT Encodec 1→M-NAR 3.3 0.68

GT mHuBERT→Encodec 1→P-NAR 3.9 0.49
GT mHuBERT→Encodec 1→N-NAR 6.2 0.48
GT mHuBERT→Encodec 1→M-NAR 5.0 0.43

Norm→Encodec 1→N-NAR 19.9 0.43
Phones→Encodec 1→P-NAR 14.1 0.46
Norm→mHuBERT→Encodec 1→M-NAR 12.6 0.46
Phones→mHuBERT→Encodec 1→P-NAR 4.5 0.48

Table 5 shows the importance of using CFG to improve
speaker similarity output. We see that adding classifier free
guidance dramatically raises speaker similarity at the cost of a
slight increase in WER, similar to how CFG trades off Inception
Score and FID in diffusion models [18].

Table 5: CFG Ablation on LibriSpeech test-clean.

Model WER SPK WER+cfg SPK+cfg

Ours Aligned 4.99 0.428 5.39 0.576
Ours Norm 12.60 0.461 12.61 0.607
Ours Phone 4.55 0.48 5.12 0.615

5. Conclusion
We introduce a novel neural codec language model that obtains
state-of-the-art results in voice conversion. We also find that
adding unit normalization and CFG allows us to more expres-
sively navigate the tradeoffs between faithfulness to the source
content and target audio. In future work we plan to investigate
ways of better disentangling speaker, accent, and prosodic in-
formation so that they may be independently modified for more
controllable voice conversion.



6. Acknowledgements
This material is based upon work supported by the National Sci-
ence Foundation under Grant No. 2238605

7. References
[1] K. Lakhotia, E. Kharitonov, W.-N. Hsu, Y. Adi, A. Polyak,

B. Bolte, T.-A. Nguyen, J. Copet, A. Baevski, A. Mohamed,
and E. Dupoux, “On generative spoken language modeling from
raw audio,” Transactions of the Association for Computational
Linguistics, vol. 9, pp. 1336–1354, 2021. [Online]. Available:
https://aclanthology.org/2021.tacl-1.79

[2] D. V. E. K. Z. Borsos, R. Marinier et al., “Audiolm: a language
modeling approach to audio generation,” in IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, 2023.

[3] C. Donahue, A. Caillon, A. R. E. Manilow, P. Esling et al.,
“Singsong: Generating musical accompaniments from singing,”
2023.

[4] J. Copet, F. Kreuk, I. Gat, T. Remez, D. Kant, G. Synnaeve,
Y. Adi, and A. Défossez, “Simple and controllable music gen-
eration,” 2023.

[5] C. Wang, S. Chen, Y. Wu, Z. Zhang, L. Zhou, S. Liu, Z. Chen
et al., “Neural codec language models are zero-shot text to speech
synthesizers,” 2023.

[6] E. Kharitonov, D. Vincent, Z. Borsos, R. Marinier, S. Girgin,
M. S. O. Pietquin, M. Tagliasacchi, and N. Zeghidour, “Speak,
read and prompt: High-fidelity text-to-speech with minimal su-
pervision,” 2023.

[7] N. Zeghidour, A. Luebs, A. Omran, J. Skoglund, and
M. Tagliasacchi, “Soundstream: An end-to-end neural audio
codec,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 30, pp. 495–507, 2021.

[8] A. Défossez, J. Copet, G. Synnaeve, and Y. Adi, “High fidelity
neural audio compression,” arXiv preprint arXiv:2210.13438,
2022.

[9] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec
2.0: A framework for self-supervised learning of speech repre-
sentations,” Advances in neural information processing systems,
vol. 33, pp. 12 449–12 460, 2020.

[10] W.-N. Hsu, B. Bolte, Y.-H. Tsai, K. Lakhotia, R. Salakhutdinov,
and A. Mohamed, “Hubert: Self-supervised speech representation
learning by masked prediction of hidden units,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. PP, pp.
1–1, 10 2021.

[11] A. Polyak, Y. Adi, J. Copet, E. Kharitonov, K. Lakhotia, W.-N.
Hsu, A. Mohamed, and E. Dupoux, “Speech Resynthesis from
Discrete Disentangled Self-Supervised Representations,” in Proc.
Interspeech 2021, 2021, pp. 3615–3619.

[12] H. Park, S. W. Yang, Seok, J. Kim, W. Shin, and S. Han, “Triaan-
vc: Triple adaptive attention normalization for any-to-any voice
conversion,” in ICASSP 2023 - 2023 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), 2023,
pp. 1–5.

[13] V. Popov, I. Vovk, V. Gogoryan, T. Sadekova, M. S.
Kudinov, and J. Wei, “Diffusion-based voice conversion with
fast maximum likelihood sampling scheme,” in International
Conference on Learning Representations, 2022. [Online].
Available: https://openreview.net/forum?id=8c50f-DoWAu

[14] H.-Y. Choi, S.-H. Lee, and S.-W. Lee, “Dddm-vc: Decoupled
denoising diffusion models with disentangled representation and
prior mixup for verified robust voice conversion,” arXiv preprint
arXiv:2305.15816, 2023.

[15] Wang, Zhichao, Chen, Yuanzhe, Xie, Lei, Tian, Qiao,
Wang, and Yuping, “Lm-vc: Zero-shot voice conversion via
speech generation based on language models,” arXiv preprint
arXiv:2306.10521, 2023.

[16] Yang, Dongchao, Tian, Jinchuan, Tan, Xu, Huang, Rongjie,
Liu, Songxiang, Chang, Xuankai, Shi, Jiatong, Zhao, Sheng,
Bian, Jiang, Wu, Xixin et al., “Uniaudio: An audio founda-
tion model toward universal audio generation,” arXiv preprint
arXiv:2310.00704, 2023.

[17] A. Lee, H. Gong, P. Duquenne, H. Schwenk, P.-J. Chen, C. Wang,
S. Popuri, Y. Adi, J. Pino, J. Gu, and W.-N. Hsu, “Textless
speech-to-speech translation on real data,” in Proceedings
of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Human
Language Technologies. Seattle, United States: Association for
Computational Linguistics, Jul. 2022, pp. 860–872. [Online].
Available: https://aclanthology.org/2022.naacl-main.63

[18] J. Ho and T. Salimans, “Classifier-free diffusion guidance,”
in NeurIPS 2021 Workshop on Deep Generative Models
and Downstream Applications, 2021. [Online]. Available:
https://openreview.net/forum?id=qw8AKxfYbI

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all
you need,” Advances in neural information processing systems,
vol. 30, 2017.

[20] J. Xu, X. Sun, Z. Zhang, G. Zhao, and J. Lin, “Understanding and
improving layer normalization,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[21] W. Peebles and S. Xie, “Scalable diffusion models with transform-
ers,” arXiv preprint arXiv:2212.09748, 2022.

[22] J. Kahn, M. Riviere, W. Zheng, E. Kharitonov, Q. Xu,
P. Mazare, J. Karadayi, V. Liptchinsky, R. Collobert, C. Fuegen,
T. Likhomanenko, G. Synnaeve, A. Joulin, A. Mohamed,
and E. Dupoux, “Libri-light: A benchmark for asr with
limited or no supervision,” in ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, May 2020. [Online]. Available:
http://dx.doi.org/10.1109/ICASSP40776.2020.9052942

[23] R. Sanabria, N. Bogoychev, N. M. andrea Carmantini, O. Klejch,
and P. Bell, “The edinburgh international accents of english
corpus: Towards the democratization of english asr,” ICASSP
2023 - 2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 1–5, 2023. [Online].
Available: https://api.semanticscholar.org/CorpusID:257901049

[24] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grang-
ier, and M. Auli, “fairseq: A fast, extensible toolkit for sequence
modeling,” in Proceedings of NAACL-HLT 2019: Demonstra-
tions, 2019.

[25] S. Chen, C. Wang, Z. Chen, Y. Wu, S. Liu et al., “Wavlm:
Large-scale self-supervised pre-training for full stack speech pro-
cessing,” IEEE Journal of Selected Topics in Signal Processing,
vol. 16, no. 6, pp. 1505–1518, 2022.

[26] K. Shen, Z. Ju, X. Tan, Y. Liu, Y. Leng, L. He, T. Qin, S. Zhao,
and J. Bian, “Naturalspeech 2: Latent diffusion models are natural
and zero-shot speech and singing synthesizers,” in International
Conference on Learning Representations, 2024.

[27] A. Vyas, B. Shi, M. L. andros Tjandra, Y.-C. Wu, B. Guo,
J. Zhang, X. Zhang, R. Adkins, W. Ngan, J. Wang, I. Cruz,
B. Akula, A. Akinyemi, B. Ellis, R. Moritz, Y. Yungster, A. Rako-
toarison, L. Tan, C. Summers, C. Wood, J. Lane, M. Williamson,
and W.-N. Hsu, “Audiobox: Unified audio generation with natural
language prompts,” 2023.

[28] J. Li, W. Tu, and L. Xiao, “Freevc: Towards high-quality text-free
one-shot voice conversion,” in ICASSP 2023 - 2023 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2023, pp. 1–5.

[29] K. Qian, Y. Zhang, H. Gao, J. Ni, C.-I. Lai, D. Cox,
M. Hasegawa-Johnson, and S. Chang, “Contentvec: An improved
self-supervised speech representation by disentangling speakers,”
2022.

[30] E. Casanova, J. Weber, C. Shulby, A. Junior, E. Gölge, and
M. Ponti, “Yourtts: Towards zero-shot multi-speaker tts and zero-
shot voice conversion for everyone,” in International Conference
on Machine Learning. PMLR, 2022, pp. 2709–2720.


	 Introduction and Related Work
	 Method
	 Discrete Codes
	 Autoregressive Model
	 Non-Autoregressive Model
	 Inference
	 Classifier Free Guidance

	 Experiments
	 Datasets
	 Model Pipelines
	 Implementation Details

	 Evaluation
	 Results

	 Conclusion
	 Acknowledgements
	 References

